论文标题

Charney-Davis的猜想,用于简单的薄聚球员

The Charney-Davis conjecture for simple thin polyominoes

论文作者

Kummini, Manoj, Veer, Dharm

论文摘要

令$ \ Mathcal {p} $为简单的薄polyomino,而$ \ bbbk $ a字段。令$ r $是与$ \ mathcal {p} $相关的to the coric $ \ bbbk $ -algebra。将$ r $的希尔伯特系列写入$ h_ {r}(t)/(1-t)^{\ dim(r)} $。我们表明$$( - 1)^{\ left \ lfloor {\ frac {\ mathrm {deg} h_r(t)} {2}} {2}} \ right \ rfloor} h_ {r} h_ {r}( - 1)\ geq 0 $ $ r $ r $ is gorerenstein。这表明与简单的薄聚元素相关的戈伦斯坦环满足了Charney-Davis的猜想。

Let $\mathcal{P}$ be a simple thin polyomino and $\Bbbk$ a field. Let $R$ be the toric $\Bbbk$-algebra associated to $\mathcal{P}$. Write the Hilbert series of $R$ as $h_{R}(t)/(1-t)^{\dim(R)}$. We show that $$(-1)^{\left\lfloor{\frac{\mathrm{deg} h_R(t)}{2}}\right\rfloor}h_{R}(-1) \geq 0$$ if $R$ is Gorenstein. This shows that the Gorenstein rings associated to simple thin polyominoes satisfy the Charney-Davis conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源