论文标题
边界Lipschitz的规律性,用于具有(P,Q)增长的功能最小化的最小化
Borderline Lipschitz regularity for bounded minimizers of functionals with (p,q)-growth
论文作者
论文摘要
我们证明了本地Lipschitz的规律性,用于具有非标准$ p,q $ p,q $生长的有限最小化,并在限制性$ q <p <p <p <p+1+p \,\ min \ min \ min \ min \ left \ left \ left \ left \ frac 1n,\ frac 1n,\ frac 1n,\ frac {2(p-1)$ {2(p-1)$ 2(p-p-1)$ {np} $ np}下,在lorentz space $ l(n,1)$中具有源术语。这将贝克·明林(Beck-Mingione)最近的工作扩展到了较弱的假设下的有限最小化器,对于$ p $,$ q $和$ n $的一些特殊范围来说,这是敏锐的。
We prove local Lipschitz regularity for bounded minimizers of functionals with nonstandard $p,q$-growth with the source term in the Lorentz space $L(N,1)$ under the restriction $q<p+1+p\,\min\left\{\frac 1N,\frac{2(p-1)}{Np-2p+2}\right\}$. This extends the recent work by Beck-Mingione to bounded minimizers under weaker hypothesis and is sharp for some special ranges of $p$, $q$ and $N$.