论文标题
关于快乐数字及其概括的变体
On a variant of the happy numbers and their generalizations
论文作者
论文摘要
本文研究了A351327在OEIS上给出的著名“快乐数字”序列的变体。首先,我们将定义这个整数序列,然后我们将显示一些重要的结果;特别是我们猜想,如果$ k $是序列的一个术语,那么它在少或等于3的过程中收敛至1个。此外,可以找到以wolfram语言编写的一些代码,以计算序列的大术语并支持我们的假设。最后,我们将探讨有关这种整数序列的一些新猜想和概括。
This paper investigates a variant of the famous "happy numbers" sequence, given by A351327 on the oeis. First of all we'll define this integer sequence, and then we'll show some important results about it; in particular we conjectured that if $k$ is a term of the sequence, then it converges to 1 in a number of steps less or equal to 3. Furthermore it will be possible to find some codes written in Wolfram language in order to compute large terms of the sequence and to support our hypothesis. At the end we'll explore some new conjectures and generalizations about this kind of integer sequence.