论文标题

与凸延迟成本进行在线匹配

Online Matching with Convex Delay Costs

论文作者

Liu, Xingwu, Pan, Zhida, Wang, Yuyi, Wattenhofer, Roger

论文摘要

我们调查了最小成本与延迟(MPMD)的完美匹配的问题,其中请求以在线方式成对匹配,以最大程度地减少空间成本和时间成本的总和。尽管线性mpmd(即,时间成本在延迟中是线性的),但在文献中已经进行了彻底的研究,但在实践中常见的不耐烦请求并不是很好。因此,我们提出了凸电 - 凸出功能是凸的,捕获时间成本增加速度越来越快的情况。由于现有的线性MPMD算法不再具有竞争力,因此我们为凸MPMD问题设计了一种新的确定性算法。对于大量的凸时间成本功能,我们的算法在任何$ k $ point统一度量空间上的竞争比率为$ O(k)$,或$ o(kδ)$时,当度量空间具有长宽比$δ$。此外,我们证明了确定性和随机算法的竞争比率的下限,这表明我们的确定性算法是最佳的。由于线性MPMD允许在任何均匀度量公位上具有恒定的竞争比率的确定性算法,因此该最佳发现凸-MPMD和线性MPMD之间存在实质性差异。

We investigate the problem of Min-cost Perfect Matching with Delays (MPMD) in which requests are pairwise matched in an online fashion with the objective to minimize the sum of space cost and time cost. Though linear-MPMD (i.e., time cost is linear in delay) has been thoroughly studied in the literature, it does not well model impatient requests that are common in practice. Thus, we propose convex-MPMD where time cost functions are convex, capturing the situation where time cost increases faster and faster. Since the existing algorithms for linear-MPMD are not competitive any more, we devise a new deterministic algorithm for convex-MPMD problems. For a large class of convex time cost functions, our algorithm achieves a competitive ratio of $O(k)$ on any $k$-point uniform metric space, or $O(kΔ)$ when the metric space has aspect ratio $Δ$. Moreover, we prove lower bounds for the competitive ratio of deterministic and randomized algorithms, indicating that our deterministic algorithm is optimal. This optimality uncover a substantial difference between convex-MPMD and linear-MPMD, since linear-MPMD allows a deterministic algorithm with constant competitive ratio on any uniform metric space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源