论文标题

使用视觉和激光雷达传感器在航空图像上连续自定位

Continuous Self-Localization on Aerial Images Using Visual and Lidar Sensors

论文作者

Fervers, Florian, Bullinger, Sebastian, Bodensteiner, Christoph, Arens, Michael, Stiefelhagen, Rainer

论文摘要

本文提出了一种新颖的地理跟踪方法,即,通过在室外环境中以未见目标区域的空中图像记录车辆的传感器信息,在室外环境中连续度量自我定位。地理跟踪方法为取代全球导航卫星系统(GNSS)的嘈杂信号提供了潜力,并且昂贵且难以维护通常用于此目的的先前地图。所提出的地理跟踪方法将来自板载摄像机和LiDAR传感器的数据与地理注册的正赶托管对齐,以连续定位车辆。我们在公制学习环境中训练模型,以从地面和空中图像中提取视觉特征。地面特征通过激光点投影到自上而下的透视图中,并与空中特征相匹配,以确定车辆和正射击之间的相对姿势。 我们的方法是第一个在端到端可区分模型中使用板载摄像机的方法,以在看不见的正射原上进行度量自定位。它表现出强烈的概括,对环境的变化是强大的,并且仅需要地理姿势作为地面真理。我们在Kitti-360数据集上评估我们的方法,并达到平均绝对位置误差(APE)为0.94m。我们进一步与Kitti Odometry数据集的先前方法进行了比较,并在地理跟踪任务上实现了最新的结果。

This paper proposes a novel method for geo-tracking, i.e. continuous metric self-localization in outdoor environments by registering a vehicle's sensor information with aerial imagery of an unseen target region. Geo-tracking methods offer the potential to supplant noisy signals from global navigation satellite systems (GNSS) and expensive and hard to maintain prior maps that are typically used for this purpose. The proposed geo-tracking method aligns data from on-board cameras and lidar sensors with geo-registered orthophotos to continuously localize a vehicle. We train a model in a metric learning setting to extract visual features from ground and aerial images. The ground features are projected into a top-down perspective via the lidar points and are matched with the aerial features to determine the relative pose between vehicle and orthophoto. Our method is the first to utilize on-board cameras in an end-to-end differentiable model for metric self-localization on unseen orthophotos. It exhibits strong generalization, is robust to changes in the environment and requires only geo-poses as ground truth. We evaluate our approach on the KITTI-360 dataset and achieve a mean absolute position error (APE) of 0.94m. We further compare with previous approaches on the KITTI odometry dataset and achieve state-of-the-art results on the geo-tracking task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源