论文标题

社会意义:重新思考轨迹预测评估和隐性最大似然估计的有效性

Social-Implicit: Rethinking Trajectory Prediction Evaluation and The Effectiveness of Implicit Maximum Likelihood Estimation

论文作者

Mohamed, Abduallah, Zhu, Deyao, Vu, Warren, Elhoseiny, Mohamed, Claudel, Christian

论文摘要

最佳N(BON)平均位移误差(ADE)/最终位移误差(FDE)是评估轨迹预测模型的最常用的度量。但是,BON并未量化整个生成的样本,从而使模型的预测质量和性能不完整。我们提出了一个新的指标,平均的马哈拉诺邦距离(AMD)来解决这个问题。 AMD是一个指标,可以量化整个产生的样品与地面真相的距离。我们还介绍了量化预测总体扩散的平均最大特征值(AMV)度量。通过证明ADE/FDE对分布变化不敏感,具有偏见的准确性感,与AMD/AMV指标不同,我们的指标在经验上得到了验证。我们介绍了隐式最大似然估计(IMLE)的用法,以替代传统的生成模型,以训练我们的模型,即社会上限。 IMLE训练机制与AMD/AMV的目标一致,即预测与地面真相接近的轨迹,并附近。社会毫无疑问是一个有效的内存深层模型,仅实时运行5.8K参数,并实现竞争成果。该问题的交互式演示可以在https://www.abduallahmohame.com/social-implitic-amdamv-adefde-demo上看到。代码可在https://github.com/abduallahmohamed/social-implitic上找到。

Best-of-N (BoN) Average Displacement Error (ADE)/ Final Displacement Error (FDE) is the most used metric for evaluating trajectory prediction models. Yet, the BoN does not quantify the whole generated samples, resulting in an incomplete view of the model's prediction quality and performance. We propose a new metric, Average Mahalanobis Distance (AMD) to tackle this issue. AMD is a metric that quantifies how close the whole generated samples are to the ground truth. We also introduce the Average Maximum Eigenvalue (AMV) metric that quantifies the overall spread of the predictions. Our metrics are validated empirically by showing that the ADE/FDE is not sensitive to distribution shifts, giving a biased sense of accuracy, unlike the AMD/AMV metrics. We introduce the usage of Implicit Maximum Likelihood Estimation (IMLE) as a replacement for traditional generative models to train our model, Social-Implicit. IMLE training mechanism aligns with AMD/AMV objective of predicting trajectories that are close to the ground truth with a tight spread. Social-Implicit is a memory efficient deep model with only 5.8K parameters that runs in real time of about 580Hz and achieves competitive results. Interactive demo of the problem can be seen at https://www.abduallahmohamed.com/social-implicit-amdamv-adefde-demo . Code is available at https://github.com/abduallahmohamed/Social-Implicit .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源