论文标题
使用一类扩散过程的公正估计
Unbiased Estimation using a Class of Diffusion Processes
论文作者
论文摘要
我们研究了对(W.R.T.)$π$ a给定期望的公正估计的问题,对$(\ Mathbb {r}^d,\ Mathcal {b}(\ Mathbb {r}^d))的一般概率度量绝对连续而连续。我们专注于与特定类型扩散过程相关的模拟,有时被称为Schrödinger-FöllmerSampler,这是一种模拟技术,它近似于特定扩散桥的定律$ \ {x_t \} _ {t \ in [0,1]} in [0,1]} \ Mathbb {n} _0 $。后一个过程的构造是使得从$ x_0 = 0 $开始,一个$ x_1 \simπ$。通常,扩散的漂移是棘手的,即使不是,也无法对相关扩散进行精确采样。结果,\ cite {sf_orig,jiao}考虑了一种随机的Euler-Maruyama方案,该方案允许为期望w.r.t.〜$π$开发偏置估计量。我们表明,对于此方法,要实现$ \ mathcal {o}(ε^2)$的均值误差,对于任意$ε> 0 $,关联的成本为$ \ MATHCAL {O}(ε^{ - 5})$。然后,我们引入了一种替代方法,该方法提供了对w.r.t.〜$π$的预期估计值,也就是说,它不会因时间离散偏置或与漂移函数近似相关的偏差而受苦。我们证明,要达到$ \ Mathcal {o}(ε^2)$的均方根误差,相关的成本是$ \ MATHCAL {O}(ε^{ - 2} | \ log(ε)|^{2+δ})$,对于任何$δ> 0 $。我们在包括贝叶斯逆问题在内的几个示例上实施方法。
We study the problem of unbiased estimation of expectations with respect to (w.r.t.) $π$ a given, general probability measure on $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ that is absolutely continuous with respect to a standard Gaussian measure. We focus on simulation associated to a particular class of diffusion processes, sometimes termed the Schrödinger-Föllmer Sampler, which is a simulation technique that approximates the law of a particular diffusion bridge process $\{X_t\}_{t\in [0,1]}$ on $\mathbb{R}^d$, $d\in \mathbb{N}_0$. This latter process is constructed such that, starting at $X_0=0$, one has $X_1\sim π$. Typically, the drift of the diffusion is intractable and, even if it were not, exact sampling of the associated diffusion is not possible. As a result, \cite{sf_orig,jiao} consider a stochastic Euler-Maruyama scheme that allows the development of biased estimators for expectations w.r.t.~$π$. We show that for this methodology to achieve a mean square error of $\mathcal{O}(ε^2)$, for arbitrary $ε>0$, the associated cost is $\mathcal{O}(ε^{-5})$. We then introduce an alternative approach that provides unbiased estimates of expectations w.r.t.~$π$, that is, it does not suffer from the time discretization bias or the bias related with the approximation of the drift function. We prove that to achieve a mean square error of $\mathcal{O}(ε^2)$, the associated cost is, with high probability, $\mathcal{O}(ε^{-2}|\log(ε)|^{2+δ})$, for any $δ>0$. We implement our method on several examples including Bayesian inverse problems.