论文标题

曲线曲折分辨率的概括

A generalisation of the toric resolution of curves

论文作者

Muselli, Simone

论文摘要

令$ k $为一个完美的字段,让$ c_0:f = 0 $为圆环$ \ mathbb {g} _ {m,k}^2 $中的平滑曲线。令$ \ mathbb {t}_δ$为与$ f $的牛顿多边形相关的复合品种。在$ \ mathbb {t}_δ$上扩展了$ c_0 $的曲折分辨率,我们在$ c_0 $的平滑完成$ k $上构建了一个显式模型。对于任何平滑的投影曲线,都存在这样的模型,可以使用牛顿多边形的迭代结构通过组合算法来描述。

Let $k$ be a perfect field and let $C_0:f=0$ be a smooth curve in the torus $\mathbb{G}_{m,k}^2$. Let $\mathbb{T}_Δ$ be the toric variety associated to the Newton polygon of $f$. Extending the toric resolution of $C_0$ on $\mathbb{T}_Δ$, we construct an explicit model over $k$ of the smooth completion of $C_0$. Such a model exists for any smooth projective curve and can be described via a combinatorial algorithm using an iterative construction of Newton polygons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源