论文标题
磁拓扑材料的进度和前景
Progress and prospects in magnetic topological materials
论文作者
论文摘要
磁性拓扑材料代表了一类化合物,其性能受到电子波函数拓扑的强烈影响,并结合磁性自旋构型。这样的材料可以支持完美传导的手性电子通道,可用于从信息存储和控制到无耗散旋转和充电传输的一系列应用。在这里,我们回顾了磁性拓扑材料领域所取得的理论和实验进步,从理论预测没有Landau水平的量子异常效应的理论预测,并导致磁性Weyl半光和抗磁性拓扑拓扑绝缘子的最新发现。我们概述了所有磁对称组表示和拓扑结构首次导致制表的最新理论进步。我们描述了几个实现Chern绝缘子,Weyl和Dirac磁性半学的实验,以及一系列物质的轴突和高阶拓扑阶段以及调查未来的观点。
Magnetic topological materials represent a class of compounds whose properties are strongly influenced by the topology of the electronic wavefunctions coupled with the magnetic spin configuration. Such materials can support chiral electronic channels of perfect conduction, and can be used for an array of applications from information storage and control to dissipationless spin and charge transport. Here, we review the theoretical and experimental progress achieved in the field of magnetic topological materials beginning with the theoretical prediction of the Quantum Anomalous Hall Effect without Landau levels, and leading to the recent discoveries of magnetic Weyl semimetals and antiferromagnetic topological insulators. We outline the recent theoretical progress that resulted in the tabulation, for the first time, of all magnetic symmetry group representations and topology. We describe several experiments realizing Chern insulators, Weyl and Dirac magnetic semimetals, and an array of axionic and higher-order topological phases of matter as well as survey future perspectives.