论文标题

对M. Pellegrini和P. Shumyatsky的猜想的反例

Counterexamples to a conjecture of M. Pellegrini and P. Shumyatsky

论文作者

Kundu, Rijubrata, Mishra, Sumit Chandra

论文摘要

在本文中,我们为M. Pellegrini和P. shumyatsky的猜想提供反例,这些猜想指出,除非$ g = \ text {psl}(n,2)$ n \ n for $ n \ geq 4 $,否则在有限的非亚伯利亚简单组中的中心符中的每个coset都包含一个奇数元素。更确切地说,我们表明,对于所有$ n \ geq 2 $,对交替的组$ a_ {8n} $不满意。

In this article, we provide counterexamples to a conjecture of M. Pellegrini and P. Shumyatsky which states that each coset of the centralizer of an involution in a finite non-abelian simple group $G$ contains an odd order element, unless $G=\text{PSL}(n,2)$ for $n\geq 4$. More precisely, we show that the conjecture does not hold for the alternating group $A_{8n}$ for all $n\geq 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源