论文标题

ESDNN:云环境中基于深度神经网络的多元工作负载预测方法

EsDNN: Deep Neural Network based Multivariate Workload Prediction Approach in Cloud Environment

论文作者

Xu, Minxian, Song, Chenghao, Wu, Huaming, Gill, Sukhpal Singh, Ye, Kejiang, Xu, Chengzhong

论文摘要

通过为服务提供商和客户提供福利,云计算被认为是IT行业的成功范式。尽管有优势,但云计算也面临着独特的挑战,其中之一是动态工作负载的效率低下的资源提供。云计算的准确工作量预测可以支持有效的资源提供,并避免资源浪费。但是,由于云工作负载的高维和高变量特征,很难有效,准确地预测工作负载。当前用于云工作负载预测的主要工作是基于回归方法或经常性的神经网络,这些方法无法捕获工作负载的长期差异。为了应对挑战并克服现有作品的局限性,我们提出了一种有效的基于学习的深度神经网络(ESDNN})方法来进行云工作负载预测。首先,我们利用一个滑动窗口将多元数据转换为有监督的学习时间序列,从而可以深入学习进行处理。然后,我们应用修订后的封闭式复发单元(GRU)来实现准确的预测。为了显示ESDNN的有效性,我们还基于来自阿里巴巴和Google云数据中心的现实痕迹进行全面的实验。实验结果表明,ESDNN可以准确有效地预测云工作负载。与最先进的基线相比,ESDNN可以大大减少均方误差,例如15%比仅使用GRU的方法。我们还将ESDNN应用于机器自动尺度,这说明ESDNN可以有效地减少活动主机的数量,因此可以优化服务提供商的成本。

Cloud computing has been regarded as a successful paradigm for IT industry by providing benefits for both service providers and customers. In spite of the advantages, cloud computing also suffers from distinct challenges, and one of them is the inefficient resource provisioning for dynamic workloads. Accurate workload predictions for cloud computing can support efficient resource provisioning and avoid resource wastage. However, due to the high-dimensional and high-variable features of cloud workloads, it is difficult to predict the workloads effectively and accurately. The current dominant work for cloud workload prediction is based on regression approaches or recurrent neural networks, which fail to capture the long-term variance of workloads. To address the challenges and overcome the limitations of existing works, we proposed an efficient supervised learning-based Deep Neural Network (esDNN}) approach for cloud workload prediction. Firstly, we utilize a sliding window to convert the multivariate data into supervised learning time series that allow deep learning for processing. Then we apply a revised Gated Recurrent Unit (GRU) to achieve accurate prediction. To show the effectiveness of esDNN, we also conduct comprehensive experiments based on realistic traces derived from Alibaba and Google cloud data centers. The experimental results demonstrate that esDNN can accurately and efficiently predict cloud workloads. Compared with the state-of-the-art baselines, esDNN can reduce the mean square errors significantly, e.g. 15% than the approach using GRU only. We also apply esDNN for machines auto-scaling, which illustrates that esDNN can reduce the number of active hosts efficiently, thus the costs of service providers can be optimized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源