论文标题

一个大规模的综合数据集和分段级视频副本检测的大规模复制拼写式意识评估协议

A Large-scale Comprehensive Dataset and Copy-overlap Aware Evaluation Protocol for Segment-level Video Copy Detection

论文作者

He, Sifeng, Yang, Xudong, Jiang, Chen, Liang, Gang, Zhang, Wei, Pan, Tan, Wang, Qing, Xu, Furong, Li, Chunguang, Liu, Jingxiong, Xu, Hui, Huang, Kaiming, Cheng, Yuan, Qian, Feng, Zhang, Xiaobo, Yang, Lei

论文摘要

在本文中,我们介绍了VCSL(视频副本段本地化),这是一种新的综合段级注释的视频复制数据集。与受视频级注释或小规模限制的现有复制检测数据集相比,VCSL不仅具有两个阶段级别的标记数据,其中包含160K现实的视频副本对,其中包含超过280k的局部复制段对,而且还涵盖了各种视频类别和视频范围的各种视频范围。每个收集的视频对中的所有复制段均经过手动提取,并伴随着精确注释的启动和结束时间戳。除了数据集外,我们还提出了一种新颖的评估协议,该协议可以更好地衡量视频对之间复制重叠段的预测准确性,并在不同情况下显示出改善的适应性。通过基准使用拟议的数据集和评估指标对几个基线和最先进的细分级视频副本检测方法进行基准测试,我们提供了一项全面的分析,可以揭示当前方法的优势和劣势,以期为未来的工作打开有希望的方向。 VCSL数据集,公制和基准代码均在https://github.com/alipay/vcsl上公开可用。

In this paper, we introduce VCSL (Video Copy Segment Localization), a new comprehensive segment-level annotated video copy dataset. Compared with existing copy detection datasets restricted by either video-level annotation or small-scale, VCSL not only has two orders of magnitude more segment-level labelled data, with 160k realistic video copy pairs containing more than 280k localized copied segment pairs, but also covers a variety of video categories and a wide range of video duration. All the copied segments inside each collected video pair are manually extracted and accompanied by precisely annotated starting and ending timestamps. Alongside the dataset, we also propose a novel evaluation protocol that better measures the prediction accuracy of copy overlapping segments between a video pair and shows improved adaptability in different scenarios. By benchmarking several baseline and state-of-the-art segment-level video copy detection methods with the proposed dataset and evaluation metric, we provide a comprehensive analysis that uncovers the strengths and weaknesses of current approaches, hoping to open up promising directions for future works. The VCSL dataset, metric and benchmark codes are all publicly available at https://github.com/alipay/VCSL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源