论文标题
自动驾驶汽车的在线自我评估的质量指数和方法
A Quality Index Metric and Method for Online Self-Assessment of Autonomous Vehicles Sensory Perception
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Reliable object detection using cameras plays a crucial role in enabling autonomous vehicles to perceive their surroundings. However, existing camera-based object detection approaches for autonomous driving lack the ability to provide comprehensive feedback on detection performance for individual frames. To address this limitation, we propose a novel evaluation metric, named as the detection quality index (DQI), which assesses the performance of camera-based object detection algorithms and provides frame-by-frame feedback on detection quality. The DQI is generated by combining the intensity of the fine-grained saliency map with the output results of the object detection algorithm. Additionally, we have developed a superpixel-based attention network (SPA-NET) that utilizes raw image pixels and superpixels as input to predict the proposed DQI evaluation metric. To validate our approach, we conducted experiments on three open-source datasets. The results demonstrate that the proposed evaluation metric accurately assesses the detection quality of camera-based systems in autonomous driving environments. Furthermore, the proposed SPA-NET outperforms other popular image-based quality regression models. This highlights the effectiveness of the DQI in evaluating a camera's ability to perceive visual scenes. Overall, our work introduces a valuable self-evaluation tool for camera-based object detection in autonomous vehicles.