论文标题

镍超导体的“正常状态”的特征

Character of the "normal state" of the nickelate superconductors

论文作者

Lee, Kyuho, Wang, Bai Yang, Osada, Motoki, Goodge, Berit H., Wang, Tiffany C., Lee, Yonghun, Harvey, Shannon, Kim, Woo Jin, Yu, Yijun, Murthy, Chaitanya, Raghu, Srinivas, Kourkoutis, Lena F., Hwang, Harold Y.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The occurrence of superconductivity in proximity to various strongly correlated phases of matter has drawn extensive focus on their normal state properties, to develop an understanding of the state from which superconductivity emerges. The recent finding of superconductivity in layered nickelates raises similar interests. However, transport measurements of doped infinite-layer nickelate thin films have been hampered by materials limitations of these metastable compounds - in particular, a relatively high density of extended defects. Here, by moving to a substrate (LaAlO$_{3}$)$_{0.3}$(Sr$_{2}$TaAlO$_{6}$)$_{0.7}$ which better stabilizes the growth and reduction conditions, we can synthesize the doping series of Nd$_{1-x}$Sr$_{x}$NiO$_{2}$ essentially free from extended defects. This enables the first examination of the 'intrinsic' temperature and doping dependent evolution of the transport properties. The normal state resistivity exhibits a low-temperature upturn in the underdoped regime, linear behavior near optimal doping, and quadratic temperature dependence for overdoping. This is strikingly similar to the copper oxides, despite key distinctions - namely the absence of an insulating parent compound, multiband electronic structure, and a Mott-Hubbard orbital alignment rather than the charge-transfer insulator of the copper oxides. These results suggest an underlying universality in the emergent electronic properties of both superconducting families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源