论文标题

部分可观测时空混沌系统的无模型预测

Harmonic projections in negative curvature

论文作者

Tošić, Ognjen

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper we construct harmonic maps that are at a bounded distance from nearest-point retractions to convex sets, in negatively curved manifolds. Specifically, given a quasidisk $Q$ in hyperbolic space, we construct a harmonic map to the hyperbolic plane that corresponds to the nearest-point retraction to the convex hull of $Q$. If $M$ is a pinched Hadamard manifold so that its isometry group acts with cobounded orbits, and if $S$ is a set in the boundary at infinity of $M$, with the property that all elements of its orbit under the isometry group of $M$ have dimension less than $\frac{n-1}{2}$, we show that the nearest-point retraction to the convex hull of $S$ is a bounded distance away from some harmonic map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源