论文标题
真实与天真的对称单相关类别
Genuine vs. naïve symmetric monoidal G-categories
论文作者
论文摘要
我们证明,通过弱弱等价的眼睛,真正的对称单型$ g $ - 吉卢和梅[algebr。地理。 Topol。 17(2017),没有。 6,3259-3339; ARXIV:1809.03017]等同于具有$ g $ Action的普通对称单类类别。一路上,我们提供了一个全球无限环空间的运营模型,并提供了等效类别的类别理论的真实对称性单体$ g $ - 类别与Schwede研究的$ G $ - Parsummable类别[J. [J. J. Topol。 15(2022),没有。 3,1325-1454; Arxiv:1912.08872]和作者[纽约J. Math。 29(2023),635-686; ARXIV:2009.07004]。
We prove that through the eyes of equivariant weak equivalences the genuine symmetric monoidal $G$-categories of Guillou and May [Algebr. Geom. Topol. 17 (2017), no. 6, 3259-3339; arXiv:1809.03017] are equivalent to just ordinary symmetric monoidal categories with $G$-action. Along the way, we give an operadic model of global infinite loop spaces and provide an equivalence between the equivariant category theory of genuine symmetric monoidal $G$-categories and the $G$-parsummable categories studied by Schwede [J. Topol. 15 (2022), no. 3, 1325-1454; arXiv:1912.08872] and the author [New York J. Math. 29 (2023), 635-686; arXiv:2009.07004].