论文标题

平均差异差异的差异不平等

Variational Inequalities For The Differences Of Averages Over Lacunary Sequences

论文作者

Demir, Sakin

论文摘要

令$ f $为$ \ mathbb {r} $上定义的本地集成函数,让$(n_k)$为eacunary序列。定义操作员$ a_ {n_k} $ by $$ a_ {n_k} f(x)= \ frac {1} {n_k} \ int_0^{n_k} f(x-t) $$ \ MATHCAL {V} _sf(x)= \ left(\ sum_ {k = 1}^\ infty | a_ {n_k} f(x)f(x)-a_ {n_ {k-1}} f(k-1}} f(x)f(x)

Let $f$ be a locally integrable function defined on $\mathbb{R}$, and let $(n_k)$ be a lacunary sequence. Define the operator $A_{n_k}$ by $$A_{n_k}f(x)=\frac{1}{n_k}\int_0^{n_k}f(x-t)\, dt.$$ We prove various types of new inequalities for the variation operator $$\mathcal{V}_sf(x)=\left(\sum_{k=1}^\infty|A_{n_k}f(x)-A_{n_{k-1}}f(x)|^s\right)^{1/s}$$ when $2\leq s<\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源