论文标题

X2T:通过从用户反馈中的在线学习培训X-to-Text键入界面

X2T: Training an X-to-Text Typing Interface with Online Learning from User Feedback

论文作者

Gao, Jensen, Reddy, Siddharth, Berseth, Glen, Hardy, Nicholas, Natraj, Nikhilesh, Ganguly, Karunesh, Dragan, Anca D., Levine, Sergey

论文摘要

我们旨在帮助用户使用灵活的自适应接口将其意图传达给机器,从而将任意用户输入转化为所需的操作。在这项工作中,我们专注于用户无法操作键盘的辅助分型应用程序,而是可以提供其他输入,例如捕获眼睛凝视或由大脑植入物测量的神经活动的网络摄像头图像。标准方法在用户输入的固定数据集上训练模型,然后部署不从错误中学习的静态接口;在某种程度上,因为从用户行为中提取错误信号可能具有挑战性。我们研究了一个简单的想法,该想法将使此类接口能够随着时间的推移而改善,并且用户的额外努力最少:从用户从用户反馈界面操作的准确性中学习。在打字域中,我们利用背景作为反馈,即接口没有执行所需的操作。我们提出了一种称为X-toxxt(X2T)的算法,该算法训练了此反馈信号的预测模型,并使用此模型来微调任何现有的默认接口,以将用户输入转换为选择单词或字符的操作。我们通过一项小规模的在线用户研究评估X2T,与12名参与者一起凝视着他们所需的单词,对60位用户的手写样品进行大规模观察性研究,并使用基于电皮质学的大脑计算机界面进行了一项试点研究。结果表明,X2T学会胜过非自适应默认接口,刺激用户共同适应接口,将接口个性化向单个用户,并可以利用从默认接口收集的离线数据以提高其初始性能并加速在线学习。

We aim to help users communicate their intent to machines using flexible, adaptive interfaces that translate arbitrary user input into desired actions. In this work, we focus on assistive typing applications in which a user cannot operate a keyboard, but can instead supply other inputs, such as webcam images that capture eye gaze or neural activity measured by a brain implant. Standard methods train a model on a fixed dataset of user inputs, then deploy a static interface that does not learn from its mistakes; in part, because extracting an error signal from user behavior can be challenging. We investigate a simple idea that would enable such interfaces to improve over time, with minimal additional effort from the user: online learning from user feedback on the accuracy of the interface's actions. In the typing domain, we leverage backspaces as feedback that the interface did not perform the desired action. We propose an algorithm called x-to-text (X2T) that trains a predictive model of this feedback signal, and uses this model to fine-tune any existing, default interface for translating user input into actions that select words or characters. We evaluate X2T through a small-scale online user study with 12 participants who type sentences by gazing at their desired words, a large-scale observational study on handwriting samples from 60 users, and a pilot study with one participant using an electrocorticography-based brain-computer interface. The results show that X2T learns to outperform a non-adaptive default interface, stimulates user co-adaptation to the interface, personalizes the interface to individual users, and can leverage offline data collected from the default interface to improve its initial performance and accelerate online learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源