论文标题

非静态多相质量流模型

A Non-Hydrostatic Multi-Phase Mass Flow Model

论文作者

Pudasaini, Shiva P.

论文摘要

建模质量流是基于静水平衡方程的经典。但是,如果动量在斜率平行和流动深度方向上类似地传输尺度,则重力和加速度可以具有相同的数量级效应,敦促用于非静态模型公式。在这里,我们通过开发一种新的非静态模型来扩展现有的单相BOUSSINEQ型模型,该模型用于由固体和细溶剂颗粒和粘性液组成的多相质量流(Pudasaini&Mergili,2019)。考虑到各种界面动量转移,新模型包括增强的重力和分散体。我们概述了非静态Boussinesq-type多相重力波的新贡献。我们提出了一个通用,结构良好的多相质量流动框架,具有增强的重力和分散,为全面的模拟奠定了基础。我们讨论了这种流动的非静态,​​分散效应更明显的情况。简化的模型表明了非静态贡献的重要性。简化的分析解决方案揭示了如何将新的分散模型简化为非分散性的模型,但在很大程度上概括了现有模型。我们假设一种称为Prime-Force的新颖的,空间变化的耗散力,该力以精确的方式在物理上控制质量流的动力学和跳动。从业人员和工程师可能会发现这种力量在技术应用中非常有用。这阐明了在动量方程式中正式包括素数的需求。一个简单的分散方程得出,突出了分散性在质量流动动力学上的本质。分散产生一个围绕参考状态的波浪速度场,这是雪崩碎片质量的第一个。随着固体体积分数或摩擦的降低,色散强度会逐能增加。

Modeling mass flows is classically based on hydrostatic balance equations. However, if momentum transfers scale similarly in slope parallel and flow depth directions, then the gravity and acceleration can have the same order of magnitude effects, urging for a non-hydrostatic model formulation. Here, we extend existing single-phase Boussinesq-type models by developing a new non-hydrostatic model for multi-phase mass flows consisting of solid and fine-solid particles and viscous fluid (Pudasaini & Mergili, 2019). The new model includes enhanced gravity and dispersion considering various interfacial momentum transfers. We outline new contributions in the non-hydrostatic Boussinesq-type multi-phase gravity waves emerging from phase-interactions. We present a general, well-structured framework of multi-phase mass flows with enhanced gravity and dispersion, setting a foundation for comprehensive simulations. We discuss situations where non-hydrostatic, dispersive effects are more pronounced for such flows. Reduced models demonstrate the importance of non-hydrostatic contributions. Simplified analytical solutions reveal how the new dispersive model can be reduced to non-dispersive ones, yet largely generalizing existing models. We postulate a novel, spatially varying dissipative force, called the prime-force, which physically controls the dynamics and run-out of the mass flow in a precise way. Practitioners and engineers may find this force very useful in technical applications. This illuminates the need of formally including the prime-force in momentum equations. A simple dispersion equation is derived highlighting the essence of dispersion on mass flow dynamics. Dispersion produces a wavy velocity field about a reference state without dispersion, the first of this kind for avalanching debris mass. Dispersion intensity increases energetically as the solid volume fraction or friction decreases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源