论文标题

量子图像处理

Quantum Image Processing

论文作者

Anand, Alok, Lyu, Meizhong, Baweja, Prabh Simran, Patil, Vinay

论文摘要

图像处理在我们的日常生活中很受欢迎,因为需要从我们的3D世界中提取基本信息,包括在诸如生物医学,经济学,娱乐和行业等广泛分开的领域中的各种应用。视觉信息,算法复杂性以及2D空间中3D场景的表示的性质都是流行的研究主题。特别是,图像数据的量迅速增加以及越来越具有挑战性的计算任务已成为进一步提高图像处理和分析效率的重要驱动力。由于Feynman于1982年提出了量子计算的概念,因此许多成就表明,量子计算显着提高了计算效率[1]。量子信息处理利用量子机械性能,例如量子叠加,纠缠和并行性,并有效加速了许多经典问题,例如分解大量数据库,搜索无分类的数据库,玻色子采样,量子模拟,求解方程式系统和机器学习。这些唯一的量子属性也可用于加快信号和数据处理。在量子图像处理中,量子图像表示起着关键作用,这实质上确定了处理任务的种类以及它们的执行程度。

Image processing is popular in our daily life because of the need to extract essential information from our 3D world, including a variety of applications in widely separated fields like bio-medicine, economics, entertainment, and industry. The nature of visual information, algorithm complexity, and the representation of 3D scenes in 2D spaces are all popular research topics. In particular, the rapidly increasing volume of image data as well as increasingly challenging computational tasks have become important driving forces for further improving the efficiency of image processing and analysis. Since the concept of quantum computing was proposed by Feynman in 1982, many achievements have shown that quantum computing has dramatically improved computational efficiency [1]. Quantum information processing exploit quantum mechanical properties, such as quantum superposition, entanglement and parallelism, and effectively accelerate many classical problems like factoring large numbers, searching an unsorted database, Boson sampling, quantum simulation, solving linear systems of equations, and machine learning. These unique quantum properties may also be used to speed up signal and data processing. In quantum image processing, quantum image representation plays a key role, which substantively determines the kinds of processing tasks and how well they can be performed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源