论文标题
部分可观测时空混沌系统的无模型预测
The Minkowski Billiard Characterization of the EHZ-capacity of Convex Lagrangian Products
论文作者
论文摘要
我们严格说明凸Lagrangian产品的EHz容量之间的连接$ k \ times t \ subset \ mathbb {r}^n \ times \ times \ times \ mathbb {r}^n $与封闭的$(k,t)$ - minkowski billiard traightiage。 Artstein-Avidan和Ostrover首次明确地建立了这种连接,并在$ K $和$ t $的平稳性和严格的凸度的假设下进行了明确的明确关系。我们以其完整的一般性证明了这种连接,即不需要凸面$ k $和$ t $的任何条件。这样可以通过使用离散计算方法来准备两个凸多属的凸lagrangian产品的EHz容量。
We rigorously state the connection between the EHZ-capacity of convex Lagrangian products $K\times T\subset\mathbb{R}^n\times\mathbb{R}^n$ and the minimal length of closed $(K,T)$-Minkowski billiard trajectories. This connection was made explicit for the first time by Artstein-Avidan and Ostrover under the assumption of smoothness and strict convexity of both $K$ and $T$. We prove this connection in its full generality, i.e., without requiring any conditions on the convex bodies $K$ and $T$. This prepares the computation of the EHZ-capacity of convex Lagrangian products of two convex polytopes by using discrete computational methods.