论文标题

关于分区SHM问题并与转移学习相似

On partitioning of an SHM problem and parallels with transfer learning

论文作者

Tsialiamanis, G., Wagg, D. J., Gardner, P. A., Dervilis, N., Worden, K.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the current work, a problem-splitting approach and a scheme motivated by transfer learning is applied to a structural health monitoring problem. The specific problem in this case is that of localising damage on an aircraft wing. The original experiment is described, together with the initial approach, in which a neural network was trained to localise damage. The results were not ideal, partly because of a scarcity of training data, and partly because of the difficulty in resolving two of the damage cases. In the current paper, the problem is split into two sub-problems and an increase in classification accuracy is obtained. The sub-problems are obtained by separating out the most difficult-to-classify damage cases. A second approach to the problem is considered by adopting ideas from transfer learning (usually applied in much deeper) networks to see if a network trained on the simpler damage cases can help with feature extraction in the more difficult cases. The transfer of a fixed trained batch of layers between the networks is found to improve classification by making the classes more separable in the feature space and to speed up convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源