论文标题
在Twitter上的Covid-19反疫苗话语的自动聚类
Automated clustering of COVID-19 anti-vaccine discourse on Twitter
论文作者
论文摘要
对疫苗接种的态度已变得更加两极化。通常,在线看到疫苗虚假信息和边缘阴谋论。在Ojea Quintana等人中发现了Twitter疫苗话语的观察性研究。 (2021年):作者分析了Twitter论述大约六个月的时间 - 2019年12月至2020年6月之间的130万条推文和1800万转发,范围从以前到建立Covid-19作为大流行之后。这项工作扩展了Ojea Quintana等人。 (2021)具有数据科学的两个主要贡献。首先,基于作者的初始网络聚类和定性分析技术,我们能够清楚地划分和可视化反毒素(反疫苗接种活动家和疫苗否认者)与其他簇(共同)(共同)的语言模式。其次,使用Antivaxxers推文的特征,我们开发了文本分类器来确定给定用户使用抗疫苗接种语言的可能性,最终有助于提高早期培训机制,以改善我们的认知环境的健康和支持(而不是Hinder)公共卫生计划。
Attitudes about vaccination have become more polarized; it is common to see vaccine disinformation and fringe conspiracy theories online. An observational study of Twitter vaccine discourse is found in Ojea Quintana et al. (2021): the authors analyzed approximately six months' of Twitter discourse -- 1.3 million original tweets and 18 million retweets between December 2019 and June 2020, ranging from before to after the establishment of Covid-19 as a pandemic. This work expands upon Ojea Quintana et al. (2021) with two main contributions from data science. First, based on the authors' initial network clustering and qualitative analysis techniques, we are able to clearly demarcate and visualize the language patterns used in discourse by Antivaxxers (anti-vaccination campaigners and vaccine deniers) versus other clusters (collectively, Others). Second, using the characteristics of Antivaxxers' tweets, we develop text classifiers to determine the likelihood a given user is employing anti-vaccination language, ultimately contributing to an early-warning mechanism to improve the health of our epistemic environment and bolster (and not hinder) public health initiatives.