论文标题

宇宙时间物理 - 宇宙红移与精细结构之间的关系恒定变化

Cosmic Time Physics -- On the relation between cosmological redshift and fine structure constant variation

论文作者

De Vicente, Juan

论文摘要

大约一个世纪以前,哈勃发现了宇宙外物体的宇宙学红移。弗里德曼 - 莱玛 - 罗伯逊 - 沃克(FLRW)公制是作为爱因斯坦田间方程的解决方案,用于同质和各向同性宇宙。指标包括时间依赖的因子A(t),旨在解释宇宙的红移。相比之下,对于Eintein的静态宇宙(a = 1),找不到合理的红移解释。在这项工作中,开发了宇宙时间物理学(CTP)理论框架。 CTP将宇宙学红移的解释从一般相对论转移到电磁域。我们表明,真空电介电常数$ε_0$和真空磁渗透性$μ_0$可以在宇宙时间内相互变化,以保持光$ c $常数的速度,同时在真空吸尘器上进行更改$ z__0 $,并在良好的结构上进行$ z $ $α$α$α$。这种变化以宇宙的后时间降低了原子能水平,以相同的方式将波长和频率重新变化,同时保持原子定量关系。请注意,自从搜索搜索在静止框架上(除降低信号)以来,随着宇宙时间的$α$的增加,尽管这种变化表现出来,但尚未实验。将CTP应用于一般相对性驱动器到Angular-Redshift关系$ d_a(z)$作为宇宙年龄的函数$ t_0 $及其曲率$ r_0 $。作为第一个近似值,我们表明CTP $ D_A(Z)$能够以$ R_0 = 1800 $ MPC和$ t_0 = 15.57 $ gly复制LCDM $ D_A(Z)$曲线。最后,使用无标度因子($ a = 1 $)的Friedmann方程来得出CTP宇宙稳定性的要求。

Almost a century ago, Hubble discovered the cosmological redshift of extragalactic objects. The Friedmann-Lemaître-Robertson-Walker (FLRW) metric was presented as a solution of Einstein's field equations for a homogeneous and isotropic universe. The metric includes a time-dependent factor a(t), intended to explain the cosmological redshift. By contrast, for the Eintein's static universe (a=1), no reasonable redshift explanation was found. In this work, the Cosmic Time Physics (CTP) theoretical framework is developed. CTP moves the explanation of cosmological redshift from general relativity to electromagnetism domain. We show that the vacuum electric permittivity $ε_0$ and the vacuum magnetic permeability $μ_0$ can vary inversely one each other over cosmic time, maintaining the speed of light $c$ constant, while conducting the change on the vacuum impedance $Z_0$ and on the fine structure constant $α$. This variation downscales the atomic energy levels with cosmic backtime, redshifting the wavelength and frequency exactly in the same manner they are observed, while maintaining the atomic quantification relations. Note that the increase on $α$ with cosmic time has gone unnoticed experimentally so far since the search is performed on rest-frame (de-redshiftted signals), in spite of the manifestation of such variation is precisely the redshift. The application of CTP to general relativity drive to an angular-redshift relation $d_A(z)$ as a function of the age of the universe $t_0$ and its curvature $R_0$. As a first approximation, we show that CTP $d_A(z)$ is able to reproduce the LCDM $d_A(z)$ curve with $R_0=1800$ Mpc and $t_0=15.57$ Gly. Finally, the Friedmann equations without scale factor ($a=1$) are used to derive the requirements for the stability of CTP universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源