论文标题
在当前方的流和modmax理论上
On Current-Squared Flows and ModMax Theories
论文作者
论文摘要
我们表明,最近引入的电动力学Modmax理论及其出生的类似攻击的概括与由应激能量张量的二次组合驱动的流程方程相关。与此流相关联的操作员是$ 4D $的类似物的$ t \ bar {t} $变形在两个维度上。该结果概括了这样一个观察结果,即普通的born-Infeld Lagrangian与麦克斯韦理论通过当前方面的流程有关。与在这种情况下一样,我们表明,除了$ d = 4 $之外,在其他任何维度上都没有类似关系。我们还证明了$ \ Mathcal {n} = 1 $ supersymmetric版本的modmax-born-infeld理论遵守一个相关的超电流平方点,该流直接以$ \ nathcal {n} = 1 $ superspace配制。
We show that the recently introduced ModMax theory of electrodynamics and its Born-Infeld-like generalization are related by a flow equation driven by a quadratic combination of stress-energy tensors. The operator associated to this flow is a $4d$ analogue of the $T\bar{T}$ deformation in two dimensions. This result generalizes the observation that the ordinary Born-Infeld Lagrangian is related to the free Maxwell theory by a current-squared flow. As in that case, we show that no analogous relationship holds in any other dimension besides $d=4$. We also demonstrate that the $\mathcal{N}=1$ supersymmetric version of the ModMax-Born-Infeld theory obeys a related supercurrent-squared flow which is formulated directly in $\mathcal{N}=1$ superspace.