论文标题

独立于量子几何和带分散的疾病对超流量的普遍抑制

Universal suppression of superfluid weight by disorder independent of quantum geometry and band dispersion

论文作者

Lau, Alexander, Peotta, Sebastiano, Pikulin, Dmitry I., Rossi, Enrico, Hyart, Timo

论文摘要

由控制超导体能量带的特性的实验进步的动机,已经致力于研究量子几何形状的影响和分散体对超流体重量的效果。在传统的超导体中,能量带宽且费米能量很大,由于量子几何形状而产生的贡献可以忽略不计,但在平频段超导体的相反极限上,超级流体重量纯粹源自Bloch波函数的量子几何形状。在这里,我们研究了能带分散和量子几何形状如何影响障碍诱导的超流量抑制。令人惊讶的是,我们发现超流量重量的障碍依赖性在各种模型中都是普遍的,并且独立于量子几何形状和分散体的平坦度。我们的结果表明,扁平频段超导体对疾病的韧性与常规超导体一样具有弹性。

Motivated by the experimental progress in controlling the properties of the energy bands in superconductors, significant theoretical efforts have been devoted to study the effect of the quantum geometry and the flatness of the dispersion on the superfluid weight. In conventional superconductors, where the energy bands are wide and the Fermi energy is large, the contribution due to the quantum geometry is negligible, but in the opposite limit of flat-band superconductors the superfluid weight originates purely from the quantum geometry of Bloch wave functions. Here, we study how the energy band dispersion and the quantum geometry affect the disorder-induced suppression of the superfluid weight. Surprisingly, we find that the disorder-dependence of the superfluid weight is universal across a variety of models, and independent of the quantum geometry and the flatness of the dispersion. Our results suggest that a flat-band superconductor is as resilient to disorder as a conventional superconductor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源