论文标题

差距:差异私人图神经网络具有聚合扰动

GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation

论文作者

Sajadmanesh, Sina, Shamsabadi, Ali Shahin, Bellet, Aurélien, Gatica-Perez, Daniel

论文摘要

在本文中,我们研究了具有差异隐私(DP)的学习图神经网络(GNN)的问题。我们提出了一种基于聚合扰动(GAP)的新型差异性GNN,该GNN为GNN的聚合函数增加了随机噪声,以统计地混淆单个边缘(边缘级隐私)或单个节点的存在以及其所有邻接边缘(节点级别的隐私隐私)。 GAP的新体系结构是根据私人学习的细节量身定制的,由三个单独的模块组成:(i)编码器模块,我们在不依赖边缘信息的情况下学习私人节点嵌入; (ii)聚集模块,其中我们根据图结构计算嘈杂的聚合节点嵌入; (iii)分类模块,我们在私有聚合上训练神经网络进行节点分类,而无需进一步查询图表。 GAP比以前的方法的主要优势在于,它可以从多跳社区的聚合中受益,并保证边缘级别和节点级别的DP不仅用于培训,而且还可以推断出培训的隐私预算以外的额外费用。我们分析了使用RényiDP保证Gap的正式隐私性,并在三个现实世界图数据集上进行经验实验。我们证明,与最先进的DP-GNN方法和基于MLP的基本基线相比,GAP提供的准确性准确性更高。我们的代码可在https://github.com/sisaman/gap上公开获取。

In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation function to statistically obfuscate the presence of a single edge (edge-level privacy) or a single node and all its adjacent edges (node-level privacy). Tailored to the specifics of private learning, GAP's new architecture is composed of three separate modules: (i) the encoder module, where we learn private node embeddings without relying on the edge information; (ii) the aggregation module, where we compute noisy aggregated node embeddings based on the graph structure; and (iii) the classification module, where we train a neural network on the private aggregations for node classification without further querying the graph edges. GAP's major advantage over previous approaches is that it can benefit from multi-hop neighborhood aggregations, and guarantees both edge-level and node-level DP not only for training, but also at inference with no additional costs beyond the training's privacy budget. We analyze GAP's formal privacy guarantees using Rényi DP and conduct empirical experiments over three real-world graph datasets. We demonstrate that GAP offers significantly better accuracy-privacy trade-offs than state-of-the-art DP-GNN approaches and naive MLP-based baselines. Our code is publicly available at https://github.com/sisaman/GAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源