论文标题
部分可观测时空混沌系统的无模型预测
Quantum Anomalous Semimetals
论文作者
论文摘要
自1980年代发现量子厅效应以来,物质和拓扑材料的拓扑状态一直吸引着广泛的兴趣,这是凝结物理和材料科学的前沿主题之一。到目前为止,所有拓扑阶段,例如量子厅效应,量子自旋霍尔效应以及拓扑绝缘子和超导体的特征是非零整数或Z和Z2拓扑不变。没有一个是半成员或分数。在这里,我们提出了一种新型的半学类型,该半学拥有一个单一的Wilson费米子锥,而不是Dirac Fermions。威尔逊·费米斯(Wilson Fermions)在能量交叉点附近具有线性分散体,但打破了手性或平等对称性,因此可以在晶格上实现未配对的狄拉克锥。 Nielsen-Ninomiya定理不禁止它们,并且避免了费米昂加倍问题。我们发现该系统可以通过相对同拷贝组进行分类,并且拓扑不变是一个半数。我们将意外的和非平凡的量子相称为“量子异常的半指标”。拓扑阶段是量子场理论中固体和量子异常中带结构拓扑的协同作用。这项工作为探索物质新颖状态打开了大门。
The topological states of matter and topological materials have been attracting extensive interests as one of the frontier topics in condensed matter physics and materials science since the discovery of quantum Hall effect in 1980s. So far all the topological phases such as quantum Hall effect, quantum spin Hall effect and topological insulators and superconductors are characterized by a nonzero integer or Z and Z2 topological invariant. None is a half-integer or fractional. Here we propose a novel type of semimetals which hosts a single cone of Wilson fermions instead of Dirac fermions. The Wilson fermions possess linear dispersion near the energy crossing point, but breaks the chiral or parity symmetry such that an unpaired Dirac cone can be realized on a lattice. They are not prohibited by the Nielsen-Ninomiya theorem and avoid the fermion doubling problem. We find that the system can be classified by the relative homotopy group, and the topological invariant is a half-integer. We term the unexpected and nontrivial quantum phase as "quantum anomalous semimetal". The topological phase is a synergy of topology of band structure in solid and quantum anomaly in quantum field theory. The work opens the door towards exploring novel states of matter with fractional topological charge.