论文标题
部分可观测时空混沌系统的无模型预测
Plasmonic nanocrystals with complex shapes for photocatalysis and growth: Contrasting anisotropic hot-electron generation with the photothermal effect
论文作者
论文摘要
在血浆,尤其是在等离子光化学方面,热电子产生的效果是一种令人兴奋的现象,推动了新的基本和应用研究。但是,获得热电子状态的微观描述代表了一个具有挑战性的问题,限制了我们设计有效的纳米antennas的能力,利用这些激发的载体。本文解决了这种局限性,并研究了控制等离激元纳米晶体上局部表面光化学的光物理动力学参数的空间分布。我们发现,具有复杂形状的小等离激子纳米晶体中的能量电子和孔的产生非常依赖于位置依赖性和各向异性,而跨纳米晶体表面的光过温几乎是均匀的。我们的形式主义包括三种用于产生激发载体的机制:drude过程,SP波段中的热电话的表面辅助产生以及频带间D孔的激发。我们的计算表明,源自这些机制的热载体生成反映了具有复杂形状的纳米晶体中热点的内部结构。注射能量载体和表面光温增加是等离激元纳米结构表面的光催化和光增长过程的驱动力。因此,对于为光催化应用设计有效的纳米antennas是必要的。
In plasmonics, and particularly in plasmonic photochemistry, the effect of hot-electron generation is an exciting phenomenon driving new fundamental and applied research. However, obtaining a microscopic description of the hot-electron states represents a challenging problem, limiting our capability to design efficient nanoantennas exploiting these excited carriers. This paper addresses this limitation and studies the spatial distributions of the photophysical dynamic parameters controlling the local surface photochemistry on a plasmonic nanocrystal. We found that the generation of energetic electrons and holes in small plasmonic nanocrystals with complex shapes is strongly position-dependent and anisotropic, whereas the phototemperature across the nanocrystal surface is nearly uniform. Our formalism includes three mechanisms for the generation of excited carriers: the Drude process, the surface-assisted generation of hot-electrons in the sp-band, and the excitation of interband d-holes. Our computations show that the hot-carrier generation originating from these mechanisms reflects the internal structure of hot spots in nanocrystals with complex shapes. The injection of energetic carriers and increased surface phototemperature are driving forces for photocatalytic and photo-growth processes on the surface of plasmonic nanostructures. Therefore, developing a consistent microscopic theory of such processes is necessary for designing efficient nanoantennas for photocatalytic applications.