论文标题
通过大量MIMO收到阵列来推断无人机发射器数量的机器学习方法
Machine Learning Methods for Inferring the Number of UAV Emitters via Massive MIMO Receive Array
论文作者
论文摘要
为了为未来无线网络中无人机发射器的DOA估算提供重要的先验知识,我们提供了一个完整的DOA预处理系统,以通过大量的MIMO接收阵列来推断发射器的数量。首先,提出了为了消除噪声信号,两个高精度信号检测器,最大特征值时间的平方根最小特征值(SR-MME)和几何平均值(GM)。与其他检测器相比,SR-MME和GM可以达到高检测概率,同时保持极低的错误警报概率。其次,如果发射器的存在是由检测器确定的,我们需要进一步确认其数量。因此,我们对样品协方差矩阵的特征值序列进行特征提取,以构建特征向量并创新提出多层神经网络(ML-NN)。此外,还设计了支持向量机(SVM)和天真的贝叶斯分类器(NBC)。仿真结果表明,基于机器学习的方法可以在信号分类中获得良好的结果,尤其是神经网络,该方法始终可以将分类精度保持在70 \%以上的分类准确性,而MIMO接收阵列。最后,我们分析了经典信号分类方法,AKAIKE(AIC)和最小描述长度(MDL)。可以得出结论,两种方法不适合具有大量MIMO阵列的场景,并且它们的性能比基于机器学习的分类器要差得多。
To provide important prior knowledge for the DOA estimation of UAV emitters in future wireless networks, we present a complete DOA preprocessing system for inferring the number of emitters via massive MIMO receive array. Firstly, in order to eliminate the noise signals, two high-precision signal detectors, square root of maximum eigenvalue times minimum eigenvalue (SR-MME) and geometric mean (GM), are proposed. Compared to other detectors, SR-MME and GM can achieve a high detection probability while maintaining extremely low false alarm probability. Secondly, if the existence of emitters is determined by detectors, we need to further confirm their number. Therefore, we perform feature extraction on the the eigenvalue sequence of sample covariance matrix to construct feature vector and innovatively propose a multi-layer neural network (ML-NN). Additionally, the support vector machine (SVM), and naive Bayesian classifier (NBC) are also designed. The simulation results show that the machine learning-based methods can achieve good results in signal classification, especially neural networks, which can always maintain the classification accuracy above 70\% with massive MIMO receive array. Finally, we analyze the classical signal classification methods, Akaike (AIC) and Minimum description length (MDL). It is concluded that the two methods are not suitable for scenarios with massive MIMO arrays, and they also have much worse performance than machine learning-based classifiers.