论文标题
部分可观测时空混沌系统的无模型预测
Implications of Distance over Redistricting Maps: Central and Outlier Maps
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In representative democracy, a redistricting map is chosen to partition an electorate into districts which each elects a representative. A valid redistricting map must satisfy a collection of constraints such as being compact, contiguous, and of almost-equal population. However, these constraints are loose enough to enable an enormous ensemble of valid redistricting maps. This enables a partisan legislature to gerrymander by choosing a map which unfairly favors it. In this paper, we introduce an interpretable and tractable distance measure over redistricting maps which does not use election results and study its implications over the ensemble of redistricting maps. Specifically, we define a central map which may be considered "most typical" and give a rigorous justification for it by showing that it mirrors the Kemeny ranking in a scenario where we have a committee voting over a collection of redistricting maps to be drawn. We include running time and sample complexity analysis for our algorithms, including some negative results which hold using any algorithm. We further study outlier detection based on this distance measure and show that our framework can detect some gerrymandered maps. More precisely, we show some maps that are widely considered to be gerrymandered that lie very far away from our central maps in comparison to a large ensemble of valid redistricting maps. Since our distance measure does not rely on election results, this gives a significant advantage in gerrymandering detection which is lacking in all previous methods.