论文标题

PUMA:培训数据删除培训的性能不变的模型增强

PUMA: Performance Unchanged Model Augmentation for Training Data Removal

论文作者

Wu, Ga, Hashemi, Masoud, Srinivasa, Christopher

论文摘要

在删除训练有素的模型的同时,保留训练有素的模型的性能是具有挑战性的。最近的研究通常表明,通过剩余的培训数据从头开始重新研究模型或通过在标记的数据点上优化模型优化来完善模型。不幸的是,除了其计算效率低下之外,这些方法不可避免地损害了由此产生的模型的概括能力,因为它们不仅消除了独特的特征,而且还删除了共享(可能是贡献)信息。为了解决绩效降解问题,本文提出了一种新颖的方法,称为性能不变模型增强〜(PUMA)。所提出的PUMA框架明确地对每个训练数据点对模型的概括能力的影响就各种性能标准进行了建模。然后,它通过最佳地重新加权剩余数据来补充删除明显数据的负面影响。为了证明PUMA框架的有效性,我们将其与实验中的多种最新数据删除技术进行了比较,在该技术中,我们显示PUMA可以有效,有效地消除标记训练数据的独特特征,而无需重述模型的模型1)愚弄会员攻击,而2)抗性绩效降级。此外,正如PUMA估计其操作过程中数据重要性一样,我们表明它可以比现有方法更有效地调试错误的数据点。

Preserving the performance of a trained model while removing unique characteristics of marked training data points is challenging. Recent research usually suggests retraining a model from scratch with remaining training data or refining the model by reverting the model optimization on the marked data points. Unfortunately, aside from their computational inefficiency, those approaches inevitably hurt the resulting model's generalization ability since they remove not only unique characteristics but also discard shared (and possibly contributive) information. To address the performance degradation problem, this paper presents a novel approach called Performance Unchanged Model Augmentation~(PUMA). The proposed PUMA framework explicitly models the influence of each training data point on the model's generalization ability with respect to various performance criteria. It then complements the negative impact of removing marked data by reweighting the remaining data optimally. To demonstrate the effectiveness of the PUMA framework, we compared it with multiple state-of-the-art data removal techniques in the experiments, where we show the PUMA can effectively and efficiently remove the unique characteristics of marked training data without retraining the model that can 1) fool a membership attack, and 2) resist performance degradation. In addition, as PUMA estimates the data importance during its operation, we show it could serve to debug mislabelled data points more efficiently than existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源