论文标题

一种基于混合模型的进化优化,具有用于物理人类互动的被动边界

A hybrid model-based evolutionary optimization with passive boundaries for physical human-robot interaction

论文作者

Lahr, Gustavo J. G., Garcia, Henrique B., Ajoudani, Arash, Boaventura, Thiago, Caurin, Glauco A. P.

论文摘要

在过去的几十年中,人类机器人相互作用的物理互动领域已经急剧发展。结果,机器人系统的要求变得更具挑战性,包括针对不同任务和用户的个性化行为。已经提出了各种机器学习技术,以赋予机器人这种适应性功能。本文提出了一种基于模型的进化优化算法,以调整腕部康复装置的明显阻抗。我们使用被动性来定义可能的控制器结果的边界,从而限制了机器人的共享自主权并确保耦合系统稳定性。该实验包括一环优化和用于腕带康复的一级自由机器人。实验结果表明,该提出的技术可以为三个受试者生成定制的被动阻抗控制器。此外,与恒定阻抗控制器相比,该方法表明,在20 \%的相互作用扭矩的均方根中降低,同时保持优化过程中的稳定性。

The field of physical human-robot interaction has dramatically evolved in the last decades. As a result, the robotic system's requirements have become more challenging, including personalized behavior for different tasks and users. Various machine learning techniques have been proposed to give the robot such adaptability features. This paper proposes a model-based evolutionary optimization algorithm to tune the apparent impedance of a wrist rehabilitation device. We used passivity to define boundaries for the possible controller outcomes, limiting the shared autonomy of the robot and ensuring the coupled system stability. The experiment consists of a hardware-in-the-loop optimization and a one-degree-of-freedom robot used for wrist rehabilitation. Experimental results showed that the proposed technique could generate customized passive impedance controllers for three subjects. Furthermore, when compared with a constant impedance controller, the method suggested decreased in 20\% the root mean square of interaction torques while maintaining stability during optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源