论文标题
使用能量概率分布零以获得二维各向异性海森堡模型的临界特性
Using the Energy probability distribution zeros to obtain the critical properties of the two-dimensional anisotropic Heisenberg model
论文作者
论文摘要
在本文中,我们介绍了一项蒙特卡洛研究,介绍了在二维中易于轴各向异性海森堡自旋模型的临界行为。基于对能量概率分布的零的部分知识,我们以良好的精度确定了模型的相位图,该模型获得了各向异性值的临界温度和指数。我们的结果表明,该模型在任何各向异性的Ising通用类中。
In this paper we present a Monte Carlo study of the critical behavior of the easy axis anisotropic Heisenberg spin model in two dimensions. Based on the partial knowledge of the zeros of the energy probability distribution we determine with good precision the phase diagram of the model obtaining the critical temperature and exponents for several values of the anisotropy. Our results indicate that the model is in the Ising universality class for any anisotropy.