论文标题

在无向图上强大的多代理匪徒

Robust Multi-Agent Bandits Over Undirected Graphs

论文作者

Vial, Daniel, Shakkottai, Sanjay, Srikant, R.

论文摘要

我们考虑了一个多工具的强盗环境,其中$ n $诚实的代理商通过网络进行了协作,以最大程度地减少遗憾,但是$ m $恶意的代理商可以任意中断学习。假设网络是完整的图,则现有的算法产生$ O(((m + k / n)\ log(t) /δ)$在此设置中后悔,其中$ k $是武器的数量,$δ$是臂间隙。对于$ m \ ll k $,这比$ o(k \ log(t)/δ)$的单格基线遗憾改善。 在这项工作中,我们表明情况超出了完整的图表。特别是,我们证明,如果最新的算法在无向线图上使用,那么诚实的代理商可能会遭受(几乎)线性的遗憾,直到时间为$ k $和$ n $的时间达到双重指数。 In light of this negative result, we propose a new algorithm for which the $i$-th agent has regret $O( ( d_{\text{mal}}(i) + K/n) \log(T)/Δ)$ on any connected and undirected graph, where $d_{\text{mal}}(i)$ is the number of $i$'s neighbors who are malicious.因此,我们将现有的后悔界限概括到完整的图表之外(其中$ d _ {\ text {mal}}(i)= m $),显示恶意代理的效果完全是本地的(从某种意义上说,只有$ d _ {\ text {mal}} {mal}}(mal}}}(i)恶意代理人直接与$ i $ y $ i $相关)。

We consider a multi-agent multi-armed bandit setting in which $n$ honest agents collaborate over a network to minimize regret but $m$ malicious agents can disrupt learning arbitrarily. Assuming the network is the complete graph, existing algorithms incur $O( (m + K/n) \log (T) / Δ)$ regret in this setting, where $K$ is the number of arms and $Δ$ is the arm gap. For $m \ll K$, this improves over the single-agent baseline regret of $O(K\log(T)/Δ)$. In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly) linear regret until time is doubly exponential in $K$ and $n$. In light of this negative result, we propose a new algorithm for which the $i$-th agent has regret $O( ( d_{\text{mal}}(i) + K/n) \log(T)/Δ)$ on any connected and undirected graph, where $d_{\text{mal}}(i)$ is the number of $i$'s neighbors who are malicious. Thus, we generalize existing regret bounds beyond the complete graph (where $d_{\text{mal}}(i) = m$), and show the effect of malicious agents is entirely local (in the sense that only the $d_{\text{mal}}(i)$ malicious agents directly connected to $i$ affect its long-term regret).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源