论文标题
序列的决策
Decisions over Sequences
论文作者
论文摘要
本文介绍了一类称为决策规则的对象,这些对象映射了决策空间的替代方案的无限序列。这些对象可用于模拟决策者在接收建议等顺序中遇到替代方案的情况。在决策规则类别中,我们研究自然子类:停止和统一的停止规则。我们的主要结果确定了这两个决策规则的等效性。接下来,我们使用图灵机介绍了决策规则的可计算性概念,并表明可以使用更简单的计算设备实现可计算规则:有限的自动机。我们进一步表明,选择规则的可计算性 - 决策规则的重要子类 - 对自然拓扑的连续性暗示。最后,我们在此框架中介绍了一些自然的启发式方法,并提供了其行为表征。
This paper introduces a class of objects called decision rules that map infinite sequences of alternatives to a decision space. These objects can be used to model situations where a decision maker encounters alternatives in a sequence such as receiving recommendations. Within the class of decision rules, we study natural subclasses: stopping and uniform stopping rules. Our main result establishes the equivalence of these two subclasses of decision rules. Next, we introduce the notion of computability of decision rules using Turing machines and show that computable rules can be implemented using a simpler computational device: a finite automaton. We further show that computability of choice rules -- an important subclass of decision rules -- is implied by their continuity with respect to a natural topology. Finally, we introduce some natural heuristics in this framework and provide their behavioral characterization.