论文标题

晶格越过加泰罗尼亚州的系数:$θ_{a} $ - 状态扩展

Coefficients of Catalan States of Lattice Crossing I: $Θ_{A}$-state Expansion

论文作者

Dabkowski, Mieczyslaw K., Wu, Cheyu

论文摘要

J.H.引入了针对平面生根树的多项式挖掘。 przytycki在2014年。正如后来所示,该多项式可用于查找加泰罗尼亚州$ c(a)$ c(a)$ c $ c $ c $ c $ c $ $ m \ times n $ -lattice n $ -lattice crossing $ l(m,n)$,而无需回报。在本文中,我们表明,通过使用$θ_{a} $ - 状态扩展可以找到任何$ c $的$ c(a)$,该扩展代表$ c(a)$作为加泰罗尼亚州系数的线性组合,而加泰罗尼亚州的系数没有$ \ mathbb {q}(q}(a)$。我们还提供了一种用于查找$θ_{a} $的算法 - 状态扩展和其应用程序的示例。最后,给出了具有非抑素系数的加泰罗尼亚州的示例。

Plucking polynomial for plane rooted trees was introduced by J.H. Przytycki in 2014. As it was shown later, this polynomial can be used to find coefficients $C(A)$ of Catalan states $C$ of $m \times n$-lattice crossing $L(m,n)$ without returns on one side. In this paper, we show that $C(A)$ for any $C$ can be found by using $Θ_{A}$-state expansion which represents $C(A)$ as a linear combination of coefficients of Catalan states with no top returns over $\mathbb{Q}(A)$. We also provide an algorithm for finding $Θ_{A}$-state expansions and examples of its applications. Finally, an example of a Catalan state with non-unimodal coefficient is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源