论文标题
使用EM的皮质表面和皮层下fMRI数据对脑激活的快速贝叶斯估计
Fast Bayesian estimation of brain activation with cortical surface and subcortical fMRI data using EM
论文作者
论文摘要
对大脑成像扫描的分析对于理解人脑功能的方式至关重要,该功能可以利用,以治疗影响大部分人口生活质量的伤害和状况。特别是,功能性磁共振成像(fMRI)扫描提供了有关在高空间和时间分辨率下生存主题的详细数据。由于收集这些扫描的成本很高,因此强大的分析方法对于产生有意义的推断至关重要。贝叶斯的方法特别允许将预期行为从先前的研究中包括在分析中,从而增加了结果的能力,同时规避了经典分析中出现的问题,包括平滑结果的影响和对多重比较测试校正的敏感性。用于皮质表面fMRI(CS-FMRI)数据的基于表面的空间贝叶斯通用线性模型的最新开发提供了使用随机偏微分方程(SPDE)先验的任务fMRI数据所需的功率增加。该模型依赖于集成的嵌套拉普拉斯近似(INLA)的计算效率来执行经过验证以超过经典分析的强大分析。在本文中,我们为GLM开发了一种精确的贝叶斯分析方法,采用预期最大化(EM)算法来找到最大的后验(MAP)对CS-FMRI和皮层下fMRI数据的基于任务的回归变量的估计,同时使用最小的计算资源。将我们提出的方法与贝叶斯GLM的INLA实施以及模拟数据的经典GLM进行了比较。还提供了该方法对人类Connectome项目的数据的验证。
Analysis of brain imaging scans is critical to understanding the way the human brain functions, which can be leveraged to treat injuries and conditions that affect the quality of life for a significant portion of the human population. In particular, functional magnetic resonance imaging (fMRI) scans give detailed data on a living subject at high spatial and temporal resolutions. Due to the high cost involved in the collection of these scans, robust methods of analysis are of critical importance in order to produce meaningful inference. Bayesian methods in particular allow for the inclusion of expected behavior from prior study into an analysis, increasing the power of the results while circumventing problems that arise in classical analyses, including the effects of smoothing results and sensitivity to multiple comparison testing corrections. Recent development of a surface-based spatial Bayesian general linear model for cortical surface fMRI (cs-fMRI) data provides the desired power increase in task fMRI data using stochastic partial differential equation (SPDE) priors. This model relies on the computational efficiencies of the integrated nested Laplace approximation (INLA) to perform powerful analyses that have been validated to outperform classical analyses. In this article, we develop an exact Bayesian analysis method for the GLM, employing an expectation-maximization (EM) algorithm to find maximum a posteriori (MAP) estimates of task-based regressors on cs-fMRI and subcortical fMRI data while using minimal computational resources. Our proposed method is compared to the INLA implementation of the Bayesian GLM, as well as a classical GLM on simulated data. A validation of the method on data from the Human Connectome Project is also provided.