论文标题

关于在真实空间密度功能理论中计算声子

On the calculation of phonons in real-space density functional theory

论文作者

Sharma, Abhiraj, Suryanarayana, Phanish

论文摘要

我们为在真实空间Kohn-Sham密度功能理论中计算声子的准确和有效的公式提供了一种准确的公式。具体而言,我们采用局部交换功能功能,在克莱曼·拜兰德(Kleinman-Bylander)代表中使用伪能力,以及静电形式的静电形式,我们得出了动态矩阵和相关的sternheimer方程的表达式,这些表达式是在真实空间有限差异方面尤其可弥补的,这些矩阵和相关的sternheimer方程在d的真实空间有限差异范围内,在D型范围内perturt perturt parturt parturt oft oft perturt parturt。特别是,该配方适用于任何维度的绝缘和金属系统,可为正交和非正交细胞对半无限和散装系统的有效和准确处理。我们还在高阶有限差异方法中开发了所提出的公式的实现。通过代表性的示例,我们验证了计算的声子分散曲线和状态密度的准确性,证明了与已建立的PlaneWave结果非常吻合。

We present an accurate and efficient formulation for the calculation of phonons in real-space Kohn-Sham density functional theory. Specifically, employing a local exchange-correlation functional, norm-conserving pseudopotential in the Kleinman-Bylander representation, and local form for the electrostatics, we derive expressions for the dynamical matrix and associated Sternheimer equation that are particularly amenable to the real-space finite-difference method, within the framework of density functional perturbation theory. In particular, the formulation is applicable to insulating as well as metallic systems of any dimensionality, enabling the efficient and accurate treatment of semi-infinite and bulk systems alike, for both orthogonal and non-orthogonal cells. We also develop an implementation of the proposed formulation within the high-order finite-difference method. Through representative examples, we verify the accuracy of the computed phonon dispersion curves and density of states, demonstrating excellent agreement with established planewave results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源