论文标题
Strongsort:再次使DeepSort变得伟大
StrongSORT: Make DeepSORT Great Again
论文作者
论文摘要
最近,多对象跟踪(MOT)引起了人们的关注,因此,已经取得了显着的进步。但是,现有方法倾向于使用各种基本模型(例如,探测器和嵌入模型),不同的培训或推理技巧等。因此,必须进行公平比较的良好基线进行构建。在本文中,首先重新审视了经典的跟踪器,即DeepSort,然后从多个角度得到显着改善,例如对象检测,功能嵌入和轨迹关联。拟议的追踪器名为Strongsort,为MOT社区贡献了强大而公平的基线。此外,提出了两种轻巧和插件算法,以解决两个固有的“缺失”问题:缺少关联和缺失检测。具体而言,与大多数方法不同,将简短的轨道与高计算复杂性下的完整轨迹相关联不同,我们提出了一个无外观的链接模型(AFLINK)来执行无外观信息的全球关联,并在速度和准确性之间取得良好的平衡。此外,我们提出了基于高斯过程回归的高斯平滑插值(GSI),以缓解缺失的检测。 Aflink和GSI可以轻松地插入各种跟踪器中,而额外的计算成本可忽略不计(分别在MOT17上,每个图像分别为1.7 ms和7.1 ms)。最后,通过将Strongsort与Aflink和GSI融合在一起,最终跟踪器(Strontsort ++)在多个公共基准测试中取得了最新的结果,即Mot17,Mot20,Dancetrack和Kitti。代码可从https://github.com/dyhbupt/strongsort和https://github.com/open-mmlab/mmtracking获得。
Recently, Multi-Object Tracking (MOT) has attracted rising attention, and accordingly, remarkable progresses have been achieved. However, the existing methods tend to use various basic models (e.g, detector and embedding model), and different training or inference tricks, etc. As a result, the construction of a good baseline for a fair comparison is essential. In this paper, a classic tracker, i.e., DeepSORT, is first revisited, and then is significantly improved from multiple perspectives such as object detection, feature embedding, and trajectory association. The proposed tracker, named StrongSORT, contributes a strong and fair baseline for the MOT community. Moreover, two lightweight and plug-and-play algorithms are proposed to address two inherent "missing" problems of MOT: missing association and missing detection. Specifically, unlike most methods, which associate short tracklets into complete trajectories at high computation complexity, we propose an appearance-free link model (AFLink) to perform global association without appearance information, and achieve a good balance between speed and accuracy. Furthermore, we propose a Gaussian-smoothed interpolation (GSI) based on Gaussian process regression to relieve the missing detection. AFLink and GSI can be easily plugged into various trackers with a negligible extra computational cost (1.7 ms and 7.1 ms per image, respectively, on MOT17). Finally, by fusing StrongSORT with AFLink and GSI, the final tracker (StrongSORT++) achieves state-of-the-art results on multiple public benchmarks, i.e., MOT17, MOT20, DanceTrack and KITTI. Codes are available at https://github.com/dyhBUPT/StrongSORT and https://github.com/open-mmlab/mmtracking.