论文标题

$ osp(n | 200万)$带有自由边界的量子链

$OSp(n|2m)$ quantum chains with free boundaries

论文作者

Frahm, Holger, Martins, Márcio J.

论文摘要

在本文中,我们研究了具有自由边界条件的$ osp(n | 2m)$量子旋转链的光谱。我们计算了这些模型的表面自由能,这些能量与热力学极限中的其他特性相似,包括基础共形场理论的有效中心电荷,仅取决于$ n-2m $。对于制度中的几种型号,$ n-2m <2 $,我们研究了有限尺寸的属性,包括超级对数校正的缩放尺寸。与周期性边界条件一样,我们发现存在与身份算子相同的共形维度的状态塔的存在。如预期的那样,相应的对数校正的幅度与以前针对具有周期性边界条件的模型的振幅不同。但是,我们指出的是,简单关系的存在,将这种幅度连接到自由和周期性的边界。根据我们的发现,我们对散装和地表西瓜相关因子的长距离行为进行了猜想。

In this paper we investigate the spectrum of $OSp(n|2m)$ quantum spin chains with free boundary conditions. We compute the surface free energy of these models which, similar to other properties in the thermodynamic limit including the effective central charge of the underlying conformal field theory, depends on $n-2m$ only. For several models in the regime $n-2m< 2$ we have studied the finite-size properties including the subleading logarithmic corrections to scaling. As in the case of periodic boundary conditions we find the existence of a tower of states with the same conformal dimension as the identity operator. As expected the amplitudes of the corresponding logarithmic corrections differ from those found previously for the models with periodic boundary conditions. We point out however the existence of simple relations connecting such amplitudes for free and periodic boundaries. Based on our findings we formulate a conjecture on the long distance behaviour of the bulk and surface watermelon correlators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源