论文标题
通过最小不确定性原理的广义标签转移校正:理论和算法
Generalized Label Shift Correction via Minimum Uncertainty Principle: Theory and Algorithm
论文作者
论文摘要
作为机器学习中的一个基本问题,数据集偏移引起范式在不断变化的环境下学习和转移知识。先前的方法假设这些变化是由协变量诱导的,这对于复杂的现实世界数据不太实用。我们考虑了广义标签转移(GLS),该变速(GLS)提供了对所需知识的学习和转移的可解释见解。当前的GLS方法:1)与统计学习理论没有很好的联系; 2)通常假设有条件的分布将与隐式转换相匹配,但其显式建模未经探索。在本文中,我们提出了一个有条件的适应框架来应对这些挑战。从学习理论的角度来看,我们证明条件适应的概括误差低于以前的协变量适应。遵循理论结果,我们提出了通过差异优化学习条件不变转换的最小不确定性原理。具体而言,我们在希尔伯特空间上提出\ textit {条件度量算子},以表征条件分布的独特性。对于有限的观察,我们证明经验估计始终定义明确,并且随着样本量的增加,经验估计将融合到潜在的真理。广泛的实验结果表明,所提出的模型在不同的GLS方案下实现了竞争性能。
As a fundamental problem in machine learning, dataset shift induces a paradigm to learn and transfer knowledge under changing environment. Previous methods assume the changes are induced by covariate, which is less practical for complex real-world data. We consider the Generalized Label Shift (GLS), which provides an interpretable insight into the learning and transfer of desirable knowledge. Current GLS methods: 1) are not well-connected with the statistical learning theory; 2) usually assume the shifting conditional distributions will be matched with an implicit transformation, but its explicit modeling is unexplored. In this paper, we propose a conditional adaptation framework to deal with these challenges. From the perspective of learning theory, we prove that the generalization error of conditional adaptation is lower than previous covariate adaptation. Following the theoretical results, we propose the minimum uncertainty principle to learn conditional invariant transformation via discrepancy optimization. Specifically, we propose the \textit{conditional metric operator} on Hilbert space to characterize the distinctness of conditional distributions. For finite observations, we prove that the empirical estimation is always well-defined and will converge to underlying truth as sample size increases. The results of extensive experiments demonstrate that the proposed model achieves competitive performance under different GLS scenarios.