论文标题

部分可观测时空混沌系统的无模型预测

Topology optimization of 3D flow fields for flow batteries

论文作者

Lin, Tiras Y., Baker, Sarah E., Duoss, Eric B., Beck, Victor A.

论文摘要

随着可再生能源产生的功率变得越来越容易获得,对氧化还原流量电池等发电量存储设备的需求对于成功将可再生能源整合到电网中至关重要。氧化还原流量电池中的一个重要组成部分是平面流场,该电场通常由蚀刻到靠背板中的二维通道组成。随着载有反应物电解质的电解质流入流动电池,流场中的通道在整个反应性多孔电极中分布流体。我们利用拓扑优化来设计具有完整三维几何变化的流场,即3D流场。具体而言,我们专注于钒氧化还原流量电池,并使用优化算法来生成从标准互相的流场通过最小化电气压力和流动压力损耗而发展的3D流场。为了了解这些设计如何改善性能,我们分析了电极内反应物浓度和交换电流的极化,以突出设计的流场如何减轻电极死区的存在。虽然可以通过调整渠道和土地尺寸来启发插头的流场,以产生高性能,但这种过程可能很乏味。这项工作为自动化该设计过程提供了一个框架。

As power generated from renewables becomes more readily available, the need for power-efficient energy storage devices, such as redox flow batteries, becomes critical for successful integration of renewables into the electrical grid. An important component in a redox flow battery is the planar flow field, which is usually composed of two-dimensional channels etched into a backing plate. As reactant-laden electrolyte flows into the flow battery, the channels in the flow field distribute the fluid throughout the reactive porous electrode. We utilize topology optimization to design flow fields with full three-dimensional geometry variation, i.e., 3D flow fields. Specifically, we focus on vanadium redox flow batteries and use the optimization algorithm to generate 3D flow fields evolved from standard interdigitated flow fields by minimizing the electrical and flow pressure power losses. To understand how these designs improve performance, we analyze the polarization of the reactant concentration and exchange current within the electrode to highlight how the designed flow fields mitigate the presence of electrode dead zones. While interdigitated flow fields can be heuristically engineered to yield high performance by tuning channel and land dimensions, such a process can be tedious; this work provides a framework for automating that design process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源