论文标题

分解过去和未来:基于共同概率质量排除的集成信息分解

Decomposing past and future: Integrated information decomposition based on shared probability mass exclusions

论文作者

Varley, Thomas F.

论文摘要

复杂系统的核心特征是,随着时间的流逝,当前因果关系中的元素之间的相互作用会限制每个人。为了使所有这些相互作用(在元素以及元素的集合之间)完全建模,我们可以将从过去到将来流动的总信息分解为一组非重叠的时间相互作用,这些信息描述了信息可以流动的所有不同模式。为了实现这一目标,我们提出了一种基于信息性和错误信息的局部概率质量排除的新型信息理论度量($ i_ {τsx} $)。为了证明该框架的实用性,我们将分解应用于大鼠大脑皮层的解离神经培养物记录的自发尖峰活动,以显示如何在系统上分配不同信息处理模式。此外,作为可本质分析,我们表明$ i_ {τsx} $可以提供对单个矩的计算结构的见解。我们探索神经元雪崩的时间分辨计算结构,发现不同类型的信息原子在雪崩过程中具有不同的曲线,大多数非平凡信息动态发生在级联的上半年之前发生。这些分析使我们能够超越对依赖关系的单一度量(例如信息传输或信息集成)的历史关注,并探索复杂系统中元素(和元素组)之间不同关系。

A core feature of complex systems is that the interactions between elements in the present causally constrain each-other as the system evolves through time. To fully model all of these interactions (between elements, as well as ensembles of elements), we can decompose the total information flowing from past to future into a set of non-overlapping temporal interactions that describe all the different modes by which information can flow. To achieve this, we propose a novel information-theoretic measure of temporal dependency ($I_{τsx}$) based on informative and misinformative local probability mass exclusions. To demonstrate the utility of this framework, we apply the decomposition to spontaneous spiking activity recorded from dissociated neural cultures of rat cerebral cortex to show how different modes of information processing are distributed over the system. Furthermore, being a localizable analysis, we show that $I_{τsx}$ can provide insight into the computational structure of single moments. We explore the time-resolved computational structure of neuronal avalanches and find that different types of information atoms have distinct profiles over the course of an avalanche, with the majority of non-trivial information dynamics happening before the first half of the cascade is completed. These analyses allow us to move beyond the historical focus on single measures of dependency such as information transfer or information integration, and explore a panoply of different relationships between elements (and groups of elements) in complex systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源