论文标题

通过合成培训数据改善概括,以进行深度学习的质量检查

Improving generalization with synthetic training data for deep learning based quality inspection

论文作者

Cordier, Antoine, Gutierrez, Pierre, Plessis, Victoire

论文摘要

使用计算机视觉技术自动化质量检查通常是一项非常数据的任务。具体而言,有监督的深度学习需要大量带注释的图像进行培训。实际上,鉴于某些缺陷类别只有少数实例可用,收集和注释此类数据不仅昂贵且费力降低,而且效率低下。如果使用视频帧可以增加这些实例的数量,则它具有主要的缺点:所得图像将相互高度相关。结果,在此类约束下接受训练的模型对输入分布变化非常敏感,这可能是由于采集系统(相机,灯光),部分或缺陷方面的变化而导致的。在这项工作中,我们证明了随机生成的合成训练图像的使用可以帮助解决领域不稳定性问题,从而使训练有素的模型更加可靠地对上下文更改。我们详细介绍了我们的合成数据生成管道和回答这些问题的深度学习方法。

Automating quality inspection with computer vision techniques is often a very data-demanding task. Specifically, supervised deep learning requires a large amount of annotated images for training. In practice, collecting and annotating such data is not only costly and laborious, but also inefficient, given the fact that only a few instances may be available for certain defect classes. If working with video frames can increase the number of these instances, it has a major disadvantage: the resulting images will be highly correlated with one another. As a consequence, models trained under such constraints are expected to be very sensitive to input distribution changes, which may be caused in practice by changes in the acquisition system (cameras, lights), in the parts or in the defects aspect. In this work, we demonstrate the use of randomly generated synthetic training images can help tackle domain instability issues, making the trained models more robust to contextual changes. We detail both our synthetic data generation pipeline and our deep learning methodology for answering these questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源