论文标题
使用深度学习的4D-STEM重建相位对象重建
Phase Object Reconstruction for 4D-STEM using Deep Learning
论文作者
论文摘要
在这项研究中,我们探讨了使用深度学习从4D扫描传输电子显微镜(4D-STEM)数据重建相位图像的可能性。该过程可以分为两个主要步骤。首先,使用卷积神经网络(CNN)回收复杂的电子波函数,以获取收敛束电子衍射图(CBED)。随后,使用相位对象近似(POA)恢复了相位对象的相应贴片。在4D STEM数据集中重复每个扫描位置,并通过复杂的求和将贴剂组合成整个相位对象。每个贴片仅从3x3相邻CBED的内核中恢复,这消除了常见的,较大的记忆要求,并在实验过程中实现了实时处理。提出了机器学习管道,数据生成和重建算法。我们证明,CNN可以检索超出光圈角的相位信息,从而实现超分辨率成像。评估了图像对比形成,显示了对厚度和原子柱类型的依赖性。可以同时成像包含光和重元素的列,并且可以区分。超分辨率,良好的噪声稳健性和直观图像对比度的结合使该方法在4D词干中的实时成像方法中独特。
In this study we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently a corresponding patch of the phase object is recovered using the phase object approximation (POA). Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.