论文标题
游戏:基于图表网络的假新闻检测的多模式融合
GAME-ON: Graph Attention Network based Multimodal Fusion for Fake News Detection
论文作者
论文摘要
当今的社交媒体具有巨大的影响力。假新闻传播在这些平台上,对我们的生活产生了破坏性和破坏性的影响。此外,随着多媒体内容比文本数据更多地提高了帖子的可见性,因此已经观察到经常将多媒体用于创建伪造内容。大量以前的基于多模式的工作试图解决建模在识别虚假内容时建模的问题。但是,这些作品具有以下局限性:(1)通过在模型后期的阶段对模式的简单串联操作员利用模式的简单串联操作员来效率低下的编码,这可能会导致信息丢失; (2)训练非常深的神经网络在小而复杂的现实生活多模式数据集上具有不成比例的参数导致过度拟合的机会更高。为了解决这些限制,我们建议使用Game-On,这是一个基于图形神经网络的端到端可训练框架,允许在不同模式内和跨不同模式内的粒状交互,以学习更多强大的数据表示,以用于多模式的假新闻检测。我们使用两个公开可用的假新闻数据集,Twitter和Weibo进行评估。我们的模型在Twitter上的表现平均超过11%,并在微博上保持竞争性能,而比最佳可比最新基线的参数少65%。
Social media in present times has a significant and growing influence. Fake news being spread on these platforms have a disruptive and damaging impact on our lives. Furthermore, as multimedia content improves the visibility of posts more than text data, it has been observed that often multimedia is being used for creating fake content. A plethora of previous multimodal-based work has tried to address the problem of modeling heterogeneous modalities in identifying fake content. However, these works have the following limitations: (1) inefficient encoding of inter-modal relations by utilizing a simple concatenation operator on the modalities at a later stage in a model, which might result in information loss; (2) training very deep neural networks with a disproportionate number of parameters on small but complex real-life multimodal datasets result in higher chances of overfitting. To address these limitations, we propose GAME-ON, a Graph Neural Network based end-to-end trainable framework that allows granular interactions within and across different modalities to learn more robust data representations for multimodal fake news detection. We use two publicly available fake news datasets, Twitter and Weibo, for evaluations. Our model outperforms on Twitter by an average of 11% and keeps competitive performance on Weibo, within a 2.6% margin, while using 65% fewer parameters than the best comparable state-of-the-art baseline.