论文标题
RescueNet:高分辨率无人机语义细分基准数据集用于自然灾害损害评估
RescueNet: A High Resolution UAV Semantic Segmentation Benchmark Dataset for Natural Disaster Damage Assessment
论文作者
论文摘要
计算机视觉和深度学习技术的最新进展促进了场景理解的显着进步,从而帮助救援团队实现了精确的损害评估。在本文中,我们提出了RescueNet,这是一种精心策划的高分辨率后式垃圾数据集,其中包括详细的分类和语义分割注释。该数据集旨在在自然灾害之后促进全面的场景理解。 RescueNet包括迈克尔飓风后收集的爆炸后图像,并使用来自多个受影响地区的无人机(UAV)获得。 RescueNet的独特性在于其提供高分辨率后盘后图像,并伴随着每个图像的全面注释。与提供限于特定场景元素(例如建筑物)的注释的现有数据集不同,RescuEnet为所有类别提供像素级注释,包括建筑物,道路,游泳池,树木等。此外,我们通过在RescueNet上实施最新的细分模型来评估数据集的实用性,从而证明了其在增强现有的自然灾害损害评估方法中的价值。
Recent advancements in computer vision and deep learning techniques have facilitated notable progress in scene understanding, thereby assisting rescue teams in achieving precise damage assessment. In this paper, we present RescueNet, a meticulously curated high-resolution post-disaster dataset that includes detailed classification and semantic segmentation annotations. This dataset aims to facilitate comprehensive scene understanding in the aftermath of natural disasters. RescueNet comprises post-disaster images collected after Hurricane Michael, obtained using Unmanned Aerial Vehicles (UAVs) from multiple impacted regions. The uniqueness of RescueNet lies in its provision of high-resolution post-disaster imagery, accompanied by comprehensive annotations for each image. Unlike existing datasets that offer annotations limited to specific scene elements such as buildings, RescueNet provides pixel-level annotations for all classes, including buildings, roads, pools, trees, and more. Furthermore, we evaluate the utility of the dataset by implementing state-of-the-art segmentation models on RescueNet, demonstrating its value in enhancing existing methodologies for natural disaster damage assessment.