论文标题
由PNIPAM和多丙烯酸的互穿聚合物网络组成的微凝胶的体积分数测定
Volume fraction determination of microgel composed of interpenetrating polymer networks of PNIPAM and polyacrylic acid
论文作者
论文摘要
通过在四种不同量的聚丙烯酸的流变学测量中研究了由聚(N-异丙丙烯酰胺)和聚丙烯酸(PAAC)的交联网络和聚丙烯酸(PAAC)组成的互穿的聚合物网络微凝胶。 PAAC含量和交联度都会改变粒子尺寸,质量和柔软度,从而强烈影响体积分数和系统粘度。在此,通过将零剪切粘度与爱因斯坦 - 束式方程拟合,从低浓度的流曲线得出了体积分数,该粘度将参数k提供为k将重量浓度转移到体积分数中。我们发现,与较软的颗粒相比,具有较高PAAC含量和交联的颗粒的特征是K的值更大,因此具有更大的体积分数。比较从流变学测量结果获得的堆积分数与两个PAAC含量的静态光散射的堆积分数进行了比较,揭示了良好的一致性。此外,在室温下,粘度与包装分数的函数的函数强调了与低PAAC含量合成的微凝胶的Arrhenius依赖性,而Vogel-Fulcher-Fulcher-Tammann的依赖性最高的PAAC浓度。与硬球行为的比较表明,粘度随着颗粒柔软度的降低而急剧增加。最后,在固定的PAAC和两个不同温度下的体积分数依赖性(在体积相变的下方和更高)下显示出与通过动态光散射测得的结构放松时间的定量一致性,表明可以用PAAC和温度调节IPN微凝胶柔软度,并且根据粒子柔软度,遵循了两种不同的途径。
Interpenetrated polymer network microgels, composed of crosslinked networks of poly(N-isopropylacrylamide) and polyacrylic acid (PAAc), have been investigated through rheological measurements at four different amounts of polyacrylic acid. Both PAAc content and crosslinking degree modify particle dimensions, mass and softness, thereby strongly affecting the volume fraction and the system viscosity. Here the volume fraction is derived from the flow curves at low concentrations by fitting the zero-shear viscosity with the Einstein-Batchelor equation which provides a parameter k to shift weight concentration to volume fraction. We find that particles with higher PAAc content and crosslinker are characterized by a greater value of k and therefore by larger volume fractions when compared to softer particles. The packing fractions obtained from rheological measurements are compared with those from static light scattering for two PAAc contents revealing a good agreement. Moreover, the behaviour of the viscosity as a function of packing fraction, at room temperature, has highlighted an Arrhenius dependence for microgels synthesized with low PAAc content and a Vogel-Fulcher-Tammann dependence for the highest investigated PAAc concentration. A comparison with the hard spheres behaviour indicates a steepest increase of the viscosity with decreasing particles softness. Finally, the volume fraction dependence of the viscosity at a fixed PAAc and at two different temperatures, below and above the volume phase transition, shows a quantitative agreement with the structural relaxation time measured through dynamic light scattering indicating that IPN microgels softness can be tuned with PAAc and temperature and that, depending on particle softness, two different routes are followed.