论文标题

在加权零和序列的单体上,并应用于galois数字和二元二元形式中的norm sonoids

On monoids of weighted zero-sum sequences and applications to norm monoids in Galois number fields and binary quadratic forms

论文作者

Geroldinger, Alfred, Halter-Koch, Franz, Zhong, Qinghai

论文摘要

令$ g $为添加剂有限的阿贝里安组和$γ\ subset \ permatatorName {end}(g)$是$ g $的内态组的子集。 $ s = g_1 \ cdot \ ldots \ cdot g _ {\ ell} $上的$ g $上的$是($γ$ - )加权零和序列,如果$γ_1,\ ldots,γ_{\ ell} (g _ {\ ell})= 0 $。我们构建了从标准单型(带有Galois组$γ$的Galois代数数字字段)的同态传递同态,并从以二元二元形式为代表的正整数的单型,到加权零-MUM序列的单体。然后,我们研究加权零和序列的单体代数和算术特性。

Let $G$ be an additive finite abelian group and $Γ\subset \operatorname{End} (G)$ be a subset of the endomorphism group of $G$. A sequence $S = g_1 \cdot \ldots \cdot g_{\ell}$ over $G$ is a ($Γ$-)weighted zero-sum sequence if there are $γ_1, \ldots, γ_{\ell} \in Γ$ such that $γ_1 (g_1) + \ldots + γ_{\ell} (g_{\ell})=0$. We construct transfer homomorphisms from norm monoids (of Galois algebraic number fields with Galois group $Γ$) and from monoids of positive integers, represented by binary quadratic forms, to monoids of weighted zero-sum sequences. Then we study algebraic and arithmetic properties of monoids of weighted zero-sum sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源